Второе начало термодинамики
Второе начало термодинамики, принцип, устанавливающий необратимость макроскопических процессов, протекающих с конечной скоростью. В отличие от чисто механических (без трения) или электродинамических (без выделения джоу-левой теплоты) обратимых процессов, процессы, связанные с теплообменом при конечной разности температур (т. е. текущие с конечной скоростью), с трением, диффузией газов, расширением газов в пустоту, выделением джоулевой теплоты и т.д., необратимы, т. е. могут самопроизвольно протекать только в одном направлении (см. Необратимые процессы).
Исторически В. н. т. возникло из анализа работы тепловых машин (С. Карно, 1824). Существует несколько эквивалентных формулировок В. н. т. Само название "В. н. т." и исторически первая его формулировка (1850) принадлежат Р. Клаузиусу: невозможен процесс, при котором теплота переходила бы самопроизвольно от тел более холодных к телам более нагретым. При этом самопроизвольный переход не следует понимать в узком смысле: невозможен не только непосредственный переход, его невозможно осуществить и с помощью машин или приборов без того, чтобы в природе не произошло ещё каких-либо изменений. Иными словами, невозможно провести процесс, единственным следствием которого был бы переход теплоты от более холодного тела к более нагретому. Если бы (в нарушение положения Клаузиуса) такой процесс оказался возможным, то можно было бы, разделив один тепловой резервуар на 2 части и переводя теплоту из одной в другую, получить 2 резервуара с различными температурами. Это позволило бы, в свою очередь, осуществить Карно цикл и получить механическую работу с помощью периодически действующей (т. е. многократно возвращающейся к исходному состоянию) машины за счёт внутренней энергии одного теплового резервуара. Поскольку это невозможно, в природе невозможны процессы, единственным следствием которых был бы подъём груза (т. е. механическая работа), произведённый за счёт охлаждения теплового резервуара (такова формулировка В. н. т., данная У. Томсоном, 1851). Обратно, если бы можно было получить механическую работу за счёт внутренней энергии одного теплового резервуара (в противоречии с В. н. т. по Томсону), то можно было бы нарушить и положение Клаузиуса. Механическую работу, полученную за счёт теплоты от более холодного резервуара, можно было бы использовать для нагревания более тёплого резервуара (например, трением) и тем самым осуществить переход теплоты от холодного тела к нагретому. Обе приведённые формулировки В. н. т., являясь эквивалентными, подчёркивают существенное различие в возможности реализации энергии, полученной за счёт внешних источников работы, и энергии беспорядочного (теплового) движения частиц тела.
Возможность использования энергии теплового движения частиц тела (теплового резервуара) для получения механической работы (без изменения состояния других тел) означала бы возможность реализации так называемого вечного двигателя 2-го рода, работа которого не противоречила бы закону сохранения энергии. Так, работа двигателя корабля за счёт охлаждения забортной воды океана - доступного и практически неисчерпаемого резервуара внутренней энергии - не противоречит закону сохранения энергии, но если, кроме охлаждения воды, нигде других изменений нет, то работа такого двигателя противоречит В. н. т. В реальном тепловом двигателе процесс превращения теплоты в работу обязательно сопряжён с передачей определённого количества теплоты внешней среде. В результате тепловой резервуар двигателя охлаждается, а более холодная внешняя среда нагревается, что находится в согласии со В. н. т. Следовательно, В. н. т. можно формулировать и как невозможность вечного двигателя 2-го рода.
? Г. А. Зисман.
В современной термодинамике В. н. т. формулируется единым и самым общим образом как закон возрастания особой функции состояния системы, которую Клаузиус назвал энтропией (обозначается S). Согласно этому закону, в замкнутой системе энтропия S при любом реальном процессе либо возрастает, либо остаётся неизменной, т. е. изменение энтропии dS ³0; знак равенства имеет место для обратимых процессов. В состоянии равновесия энтропия замкнутой системы достигает максимума и никакие макроскопические процессы в такой системе, согласно В. н. т., невозможны. Для незамкнутой системы направление возможных процессов, а также условия равновесия могут быть получены из закона возрастания энтропии, примененного к составной замкнутой системе, получаемой путём присоединения всех тел, участвующих в процессе. Это приводит в общем случае необратимых процессов к неравенствам