Выравнивание
Выравнивание в статистике, метод, при помощи которого получают аналитическое и графическое выражение статистической закономерности, лежащей в основе заданного эмпирического ряда статистических данных. Путём В. ломаную линию уровней эмпирического ряда заменяют плавной "выравнивающей" кривой (в частном случае - прямой) и вычисляют уравнение этой кривой. При В. последовательно решают три задачи: выбирают тип уравнения (форму плавной кривой); вычисляют параметры (коэффициенты) этого уравнения; вычисляют (на основании уравнения) или измеряют (по графику кривой) уровни (ординаты) полученного "теоретического" статистического ряда. Тип уравнения и, соответственно, форму плавной кривой выбирают на основании общих сведений (или часто - из практического опыта) о сущности явления, о закономерностях его структуры и развития, о зависимости между его признаками и т.д. (так называемое "аналитическое" В.); при отсутствии таких предварительных сведений тип уравнения (форму кривой) часто может подсказать графическая форма ломаной, выражающей заданный эмпирический ряд.
В социально-экономической статистике В. применяют в трёх типичных случаях: 1) В. рядов распределений; 2) В. ломаных линий регрессии; 3) В. рядов динамики. Цель В. рядов распределения - количественно и графически выразить характер закономерности распределения единиц совокупности по данному признаку (например, их нормальное распределение, распределение по закону Пуассона и т.п.). При этом сохраняют равенство некоторых главных числовых характеристик заданного эмпирического и получаемого теоретического рядов: средней величины признака, среднего квадратического отклонения, общей численности единиц совокупности. Степень совокупного соответствия уровней (ординат) полученного теоретического ряда уровням эмпирическим выясняют при помощи какого-либо критерия согласия. В некоторых особых случаях - например, при В. распределения населения по возрасту, показанному при переписи, для устранения хорошо известной "аккумуляции возрастов", оканчивающихся на 0 или на 5, - применяют специально разработанные способы и формулы. В. распределений всегда предполагает наличие достаточно многочисленного заданного эмпирического ряда данных. В. ломаных линий регрессии производят при изучении связей признаков, чтобы получить плавную линию регрессии и уравнение регрессии (корреляционное), выражающее зависимость средних значений одного признака от значений других, например: