Газы в металлах
Газы в металлах. Г. попадают в твердые и жидкие металлы при их выплавке и электролитическом получении, при взаимодействии металлических изделий с атмосферой. Например, при производстве стали из чугуна в мартеновских печах или в конверторах в расплавленный металл из печной атмосферы попадают кислород и азот; при получении никеля электролизом его водных растворов твёрдый металл насыщается водородом, выделяющимся на катоде. Различают 3 вида взаимодействия межу Г. и металлами: адсорбцию, растворение и образование химических соединений.
При адсорбции Г. взаимодействуют только с поверхностью металла и образуют на ней плёнки толщиной, равной диаметру одной или несколько молекул. Адсорбция уменьшается при повышении температуры и понижении давления Г. над металлом. Г., адсорбированные на металлических частях электровакуумных приборов (применяемых в измерительной аппаратуре), радиопередающих устройств, преобразователей электрической энергии, в процессе эксплуатации десорбируются и нарушают устойчивую работу аппаратуры (например, изменяют электропроводность). Удаление адсорбированных Г. при изготовлении такой аппаратуры достигается глубокой откачкой, применением поглотителей Г. (геттеров) и является одной из важнейших задач вакуумной техники.
Большинство Г., кроме инертных, образует с твёрдыми и жидкими металлами истинные растворы. Г., молекулы которых состоят из нескольких атомов (например, сернистый газ, углекислый газ, водород, азот), при растворении в металлах распадаются на атомы. Это облегчает внедрение Г. в металл, т. к. уменьшает энергию, необходимую для того, чтобы раздвинуть сильно взаимодействующие друг с другом атомы металла. Кроме того, часть затрачиваемой энергии компенсируется её выигрышем при химическом взаимодействии атомов Г. и металла. Поэтому растворение многоатомных газов сопровождается их диссоциацией. Например, двухатомные газы водород и азот растворяются в железе по реакциям
? H2 = 2Нв железе;?? N2" = 2Nв железе.
Растворимость Г. в расплавленных металлах значительно выше, чем в твёрдых. Это часто приводит к ухудшению качества металлических слитков из-за образования в них газовых пузырей, внутренних раковин и пористости. Такие дефекты возникают вследствие того, что при постепенном затвердевании слитка (кристаллизации) в изложнице концентрация Г. в остающейся жидкости настолько повышается, что Г. выделяются в ее объеме, а образующиеся при этом пузыри не успевают всплыть и удалиться до полного затвердевания слитка.
Г. часто образуют с металлами химические соединения: окислы, сульфиды, нитриды. Эти соединения нерастворимы в металлах и выделяются в виде самостоятельных фаз - т. н. неметаллических включений, присутствие которых сильно ухудшает механические и антикоррозионные свойства металлов и сплавов. Поэтому в промышленности применяются различные способы удаления Г. из металлов. Один из наиболее эффективных - использование вакуумирования. При этом благодаря понижению давления Г. происходит их выделение из металлов, протекающее особенно интенсивно, когда металл находится в расплавленном состоянии.
Широко распространены выплавка металлов и сплавов, особенно стали, в вакуумных печах, вакуумирование жидкого металла при разливке и в ковшах (см. Вакуумная плавка, Дегазация стали). С такой же целью применяют продувку жидкого металла инертными газами (например, аргоном). В ряде случаев осуществляют плавку или нагрев металла в защитной газовой атмосфере, не содержащей компонентов, вредных для металла.
Лит.: Смителлс К., Газы и металлы, пер. с англ., М. - Л., 1940; Вакуумная металлургия, М., 1962; Жуховицкий А. А., Шварцман Л. А., Физическая химия, М., 1963; Дэшман С., Научные основы вакуумной техники, пер. с англ., М., 1964.
? Л. А. Шварцман, Л. В. Ванюкова.