Графические вычисления
Графические вычисления, методы получения численных решений различных задач путём графических построений. Г. в. (графическое умножение, графическое решение уравнений, графическое интегрирование и т. д.) представляют систему построений, повторяющих или заменяющих с известным приближением соответствующие аналитические операции. Графическое выполнение этих операций требует каждый раз последовательности построений, приводящих в результате к графическому определению искомой величины. При Г. в. используются графики функций. Г. в. находят применение в приложениях математики. Достоинства Г. в. - простота их выполнения и наглядность. Недостаток - малая точность получаемых ответов. Однако в большом числе задач, особенно в инженерной практике, точность Г. в. вполне достаточна. Графические методы с успехом могут быть использованы для получения первых приближении, уточняемых затем аналитически. Иногда Г. в. называются вычисления, производимые при помощи номограмм. Это не совсем правильно, т. к. номограммы являются геометрическими изображениями функциональных зависимостей и не требуют для нахождения численных значений функции каких-либо построений (см. Номография).
Вычисление алгебраических выражений. Числа при Г. в. обычно изображаются направленными отрезками на прямой. Для этого выбирают единичный отрезок (длина его называется масштабом построения). Одно из направлений на прямой принимают за положительное. В этом направлении откладывают отрезки, изображающие положительные числа; отрицательные числа изображаются отрезками, имеющими противоположное направление. На рис. 1 показаны отрезки M0M, A0A и B0B, соответствующие числам 1, 3 и -4 (положительное направление здесь слева направо).
Для нахождения суммы чисел соответствующие им отрезки откладывают на прямой один за другим так, чтобы начало следующего совпадало с концом предыдущего. Отрезок, началом которого является начало первого отрезка и концом - конец последнего, будет изображать сумму. Разность чисел находят, строя сумму отрезка, изображающего первое число, и отрезка, изображающего число, противоположное второму.
Умножение и деление осуществляют построением пропорциональных отрезков, которые отсекают на сторонах угла параллельные прямые (MA и BC на рис. 2). Так построены отрезки 1, а, б и с, длины которых удовлетворяют соотношению а : 1 = с : b, откуда с = аb или b = с/а; следовательно, зная два из трёх отрезков a, b и с, всегда можно найти третий, т. е. можно построить произведение или частное двух чисел. При этом построении единичные отрезки на прямых OB и OC могут быть различными.
Комбинируя действия умножения и сложения, графически вычисляют суммы произведений вида a1x1 + a2x2 + ... + anxn
и взвешенное среднее (a1x1 + ... + anxn)/(a1 + ...+ а2).
Графическое возведение в целую степень заключается в последовательном повторении умножения.
Построение значений многочлена f(x) = a0xn + a1xn-1 + ... + an-1x + an
основано на представлении его в виде f(x)= {[(a0x + a1)х + а2]х + ...}х + аn
и последовательном графическом выполнении действий, начиная с выражения, заключённого во внутренние скобки.
Графическое решение уравнения f(x) = 0 заключается в вычерчивании графика функции у = f(x) и нахождении абсцисс точек пересечения кривой с осью Ox, которые и дают значения корней уравнения. Иногда решение можно значительно упростить, если представить уравнение в виде j1(x) = j2(x) и вычертить кривые y = j1(x) и y = j2(x). Корнями уравнения будут значения абсцисс точек пересечения этих кривых (на рис. 3 показано нахождение корня x0).
Так, для решения уравнения третьей степени z3 + az2 + bz + c = 0 его приводят к виду x3 + px + q = 0 заменой z = х - а/3, затем уравнение представляют в виде x3 = -px - q и вычерчивают кривую у = х3 и прямую у =-px - q. Точки их пересечения определяют корни x1, x2, x3 уравнения. Построение удобно тем, что кубическая парабола у = х3остаётся одной и той же для всех уравнений третьей степени. На рис. 4 решено уравнение x3 - 2,67x - 1 = 0. Его корни x1 = -1,40, x2 = -0,40, x3 = 1,80. Аналогично решается уравнение четвёртой степени z4 + az3 + bz2 + cz + d = 0. Подстановкой z = x - a/4 его приводят к виду x4 + px3 + qx + s = 0и затем переходят к системе уравнений: у = х2, (х = х0)2 + (у - у0)2 = r2, вводя переменное y. Здесь x0 = -q/2, у0 = (1 = р)/2 и