Большая советская энциклопедия

Группа (матем.)


Группа (матем.)
Группа, одно из основных понятий современной математики. Теория Г. изучает в самой общей форме свойства действий, наиболее часто встречающихся в математике и её приложениях (примеры таких действий - умножение чисел, сложение векторов, последовательное выполнение преобразований и т. п.). Общность теории Г., а вместе с тем и широта её приложений обеспечиваются тем, что она изучает свойства действий в их чистом виде, отвлекаясь как от природы элементов, над которыми выполняется действие, так и от природы самого действия. В то же время теория Г. изучает не совсем произвольные действия, а лишь те, которые обладают рядом основных свойств, перечисляемых в определении Г. (см. ниже).

К понятию Г. можно прийти, например, исследуя симметрию геометрических фигур. Так, квадрат (рис. a) представляется симметричной фигурой, так как, например, его поворот j около центра на 90? по часовой стрелке или зеркальное отражение y относительно диагонали AC не изменяют его положения; всего существует 8 различных движений, совмещающих квадрат с собой. Для круга (рис. б) таких движений, очевидно, уже бесконечно много - таковы, например, все его повороты около центра. А для фигуры, изображенной на рис. в, существует лишь одно движение, совмещающее её с собой, - тождественное, т. е. оставляющее каждую точку фигуры на месте.

Множество G различных движений, самосовмещающих данную фигуру, и служит характеристикой большей или меньшей её симметричности: чем больше множество G, тем симметричнее фигура. Определим на множестве G композицию, т.е. действие над элементами из G, по следующему правилу: если j,y - два движения из G, то результатом их композиции (иногда говорят "произведением" j и y) называется движение joy, равносильное последовательному выполнению сначала движения j , а затем движения y. Например, если j, y - движения квадрата, указанные выше, то joy - отражение квадрата относительно оси, проходящей через середины сторон AB и CD. Множество движений G, взятое с определённой на нём композицией, называется группой симметрии данной фигуры. Очевидно, композиция на множестве G удовлетворяет следующим условиям: 1) (j○y)○q = j○ (y○q) для любых j, y, q из G; 2) в G существует такой элемент e, что e○j = j○e = j для любого j из G; 3) для любого j из G существует в G такой элемент j-1, что j○j-1 =

j-1○j = e. Действительно, в качестве e можно взять тождественное движение, а в качестве j-1 - движение, обратное j, т. е. возвращающее каждую точку фигуры из нового положения в старое.
Общее (формальное) определение Г. таково. Пусть G - произвольное множество каких-нибудь элементов, на котором задана композиция (иначе: действие над элементами): для любых двух элементов j,y из G определён некоторый элемент joy снова из G. Если при этом выполняются условия 1), 2), 3), то множество G с заданной на нём композицией называется группой.
Например, если G - множество всех целых чисел, а композиция на G - их обычное сложение (роль e будет играть число 0, а роль (j-1 - число -j), то G - группа. Часть Н множества G, состоящая из чётных чисел, сама будет Г. относительно той же композиции. В таких случаях говорят, что Н - подгруппа группы G. Отметим, что обе эти Г. удовлетворяют следующему дополнительному условию: 4) j○y = y○j для любых j, y из группы. Всякая группа с этим условием называется коммутативной, или абелевой.
Ещё один пример группы. Подстановкой множества символов 1, 2, ..., n называется таблица

Смотрите также: