Комплексная амплитуда
Комплексная амплитуда, представление амплитуды А и фазы y гармонического колебания х = Acos (wt + y) с помощью комплексного числа =Aexp (ij)=Acosj + iAsinj. При этом гармоническое колебание описывается выражением х = Re [ (expiwt)], где Re - вещественная часть комплексного числа, стоящего в квадратных скобках. К. а. обычно применяются при расчете линейных электрических цепей (с линейной зависимостью тока от напряжений), содержащих активные и реактивные элементы. Если на такую цепь действует гармоническая эдс частоты w, то использование К. а. тока и напряжения позволяет перейти от дифференциальных уравнений к алгебраическим. Связь между К. а. тока I и напряжения U для активного сопротивления R определяется законом Ома: / = Ї R.Для индуктивности L эта связь имеет вид I = -а для ёмкости С: I=iwCU. Таким образом, величины iwL и L/iwC играют роли индуктивного и ёмкостного сопротивлений.
Расчёт К. а. тока для участка электрической цепи, содержащего элементы L, С и R, на который действует внешняя гармоническая эдс частоты w, производится с помощью соотношения, аналогичного закону Ома: /= . Здесь Z - комплексное сопротивление данного участка цепи, которое может быть найдено по тем же правилам последовательного и параллельного включения сопротивлений, что и для цепей? из активных сопротивлений на постоянном токе. Найденная таким образом К. а. тока позволяет определить амплитуду и фазу реального тока, протекающего в цепи.
Метод К. а. может быть применен при любом периодическом воздействии на линейную цепь. При этом внешнее негармоническое воздействие должно быть разложено в ряд Фурье, после чего производится расчет цепи для каждой из компонент внешнего воздействия и суммирование полученных результатов. При расчёте методом К. а. средней мощности Р = IUcosj, где j - сдвиг фаз между током и напряжением, необходимо пользоваться правилом: активная мощность равна?? Р= Ї(UI*+IU*).
Здесь /* и U* - комплексно сопряжённые амплитуды тока и напряжения.
? В. Н. Парыгин.