Модальная логика
Модальная логика, область логики, посвящённая изучению модальностей, построению исчислений, в которых модальности применяются к высказываниям, наряду с логическими операциями, и сравнительному исследованию таких исчислений. "Модальные операторы" ("возможно", "необходимо" и др.) могут относиться как к высказываниям или предикатам, так и к словам, выражающим какие-либо действия или поступки. Интерес к проблемам М. л. обусловлен прежде всего естественной связью, с одной стороны, между модальностями типа "необходимо" и понятием "логического закона" (т. е. тождественно истинного высказывания какой-либо логической системы), а с другой - между модальностями типа "возможно" и такими гносеологическими и общенаучными понятиями, как "(эффективно) осуществимо", "вычислимо" и т. п.
В классических системах М. л. (для которых справедлив исключённого третьего принцип A V ù A или закон снятия двойного отрицания ù ù А É А для модальностей имеют место соотношения двойственности, аналогичные "законам де Моргана" ù (А V В) º (ù А & ù В) и ù (А & В) º (ù А V ù В) алгебры логики и соответствующим эквивалентностям для кванторов, связывающие операторы возможности à и необходимости с отрицанием ù: A º ù à ù A и àА º ù ù A.
Поэтому в аксиоматических системах М. л. в качестве исходной вводят обычно одну модальную операцию (используя какую-либо из этих эквивалентностей в качестве определения другой операции). Аналогично вводятся и другие модальные операции (не входящие в число логических операций и не выразимые через них).
Системы М. л. могут быть интерпретированы в терминах многозначной логики (простейшие системы - как трёхзначные: "истина", "ложь", "возможно"). Это обстоятельство, а также возможность применения М. л. к построению теории "правдоподобных" выводов указывают на её глубокое родство с вероятностной логикой.
Кроме рассматривавшихся выше "абсолютных" модальностей, в М. л. приходится иметь дело с т. н. относительными, т. е. связанными с какими-либо условиями ("А возможно, если В", и т. п.); формализация правил обращения с ними не вызывает дополнительных трудностей и проводится с помощью аппарата ограниченных кванторов (с использованием предикатов, выражающих ограничительные условия, и логические операции материальной импликации).
? Ю. А. Гастев.