Большая советская энциклопедия

Нефть

Нефть

Нефть (через тур. neft, от перс. нефт) - горючая маслянистая жидкость со специфическим запахом, распространённая в осадочной оболочке Земли, являющаяся важнейшим полезным ископаемым. Образуется вместе с газообразными углеводородами (см. Газы природные горючие)обычно на глубинах более 1,2-2 км. Вблизи земной поверхности Н. преобразуется в густую мальту, полутвёрдый асфальт и др.

I. Общие сведения

Н. состоит из различных углеводородов (алканов, циклоалканов, аренов - ароматических углеводородов - и их гибридов) и соединений, содержащих, помимо углерода и водорода, гетероатомы - кислород, серу и азот.
Н. сильно варьирует по цвету (от светло-коричневой, почти бесцветной, до темно-бурой, почти чёрной) и по плотности - от весьма лёгкой (0,65-0,70 г/см3)до весьма тяжёлой (0,98-1,05 г/см3). Пластовая Н., находящаяся в залежах на значительной глубине, в различной степени насыщена газообразными углеводородами. По химическому составу Н. также разнообразны. Поэтому говорить о среднем составе Н. или "средней" Н. можно только условно (рис. 1). Менее всего колеблется элементный состав: 82,5-87% С; 11,5-14,5% Н.; 0,05-0,35, редко до 0,7% О; 0,001-5,3% S; 0,001-1,8% N. Преобладают малосернистые Н. (менее 0,5% S), но около 1/3 всей добываемой в мире Н. содержит свыше 1% S.
Мировые (без социалистических стран) разведанные запасы Н. оценивались к началу 1973 в 71,2 млрд. т (данные по запасам Н., публикуемые за рубежом, возможно занижены). Запасы Н. в недрах по странам и регионам распределяются крайне неравномерно (рис. 2).
Мировая добыча Н. удваивается примерно каждое десятилетие. В 1938 она составляла около 280 млн. т, в 1950 около 550 млн. т, в 1960 свыше 1 млрд. т, а в 1970 свыше 2 млрд. т. В 1973 мировая добыча Н. превысила 2,8 млрд. т. В СССР в 1940 было добыто 31,1 млн. т, в 1973 - 429 млн. т. Всего с начала промышленной добычи (с конца 1850-х гг.) до конца 1973 в мире было извлечено из недр 41 млрд. т, из которых половина приходится на 1965-73.
Н. занимает ведущее место в мировом топливно-энергетическом хозяйстве. Её доля в общем потреблении энергоресурсов непрерывно растет: 3% в 1900, 5% перед 1-й мировой войной 1914-1918, 17,5% накануне 2-й мировой войны 1939-45, 24% в 1950 и 41,5% в 1972. Н. составляет основу топливно-энергетических балансов всех экономически развитых стран. В США на её долю (включая газовый конденсат) приходится 46% общего потребления энергии (1972), в странах ЕЭС - свыше 60% (1972), в Японии - 70% (1972). В СССР доля Н. в суммарной добыче топлива (в пересчёте на условное топливо) составила 42,3% в 1972. Опережающий рост потребления жидкого топлива в развитых капиталистических странах (США, страны Западной Европы, Япония, Канада, Австралийский Союз), на долю которых приходится свыше 4/5 потребления нефтепродуктов в мире (без социалистических стран), но около 10% разведанных запасов и около 30% её добычи, привёл к углублению географического разрыва между районами добычи и потребления Н. (рис. 3).
Быстрый рост добычи Н. в развивающихся странах (особенно на Ближнем и Среднем Востоке), за счёт которых покрываются растущие промышленные и военно-стратегические потребности развитых капиталистических стран, оказывает решающее воздействие на нефтяное хозяйство капиталистического мира. См. Нефтяные монополии.
II. Происхождение и условия залегания
В познании генетической природы Н. и условий её образования можно выделить несколько периодов. Первый из них (донаучный) продолжался до средних веков. Так, в 1546 Агрикола писал, что Н. и каменные угли имеют неорганическое происхождение; последние образуются путём сгущения и затвердевания Н.
Второй период - научных догадок - связывается с датой опубликования труда М. В. Ломоносова "О слоях земных" (1763), где была высказана идея о дистилляционном происхождении Н. из того же органического вещества, которое даёт начало каменным углям.
Третий период в эволюции знаний о происхождении Н. связан с возникновением и развитием нефтяной промышленности. В этот период были предложены разнообразные гипотезы неорганического (минерального) и органического происхождения Н.
В 1866 французский химик М. Бертло высказал предположение, что Н. образуется в недрах Земли при воздействии углекислоты на щелочные металлы. В 1871 франц. химик Г. Биассон выступил с идеей о происхождении Н. путём взаимодействия воды, CO2, H2S с раскалённым железом. В 1877 Д. И. Менделеев предложил минеральную (карбидную) гипотезу, согласно которой возникновение Н. связано с проникновением воды в глубь Земли по разломам, где под воздействием её на "углеродистые металлы" - карбиды - образуются углеводороды и окись железа. В 1889 В. Д. Соколов изложил гипотезу космического происхождения Н. По этой гипотезе исходным материалом для возникновения Н. служили углеводороды, содержавшиеся в газовой оболочке Земли ещё во время её звёздного состояния. По мере остывания Земли углеводороды поглотились расплавленной магмой. Затем, с формированием земной коры, углеводороды проникли в осадочные породы в газообразном состоянии, конденсировались и образовали Н.
В 50-60-е гг. 20 в. в СССР (Н. А. Кудрявцев, В. Б. Порфирьев, Г. Н. Доленко и др.) и за рубежом (английский учёный Ф. Хойл и др.) возрождаются различные гипотезы неорганического (космического, вулканического, магматогенного) происхождения Н. Однако на 6-м (1963), 7-м (1967) и 8-м (1971) Международных нефтяных конгрессах неорганические гипотезы не получили поддержки.
Важным для познания генезиса Н. являлось установление в конце 19 - начале 20 вв. оптической активности Н., а также тесной связи Н. с сапропелевым органическим веществом в осадочных породах. Сапропелевую гипотезу, высказанную впервые немецким ботаником Г. Потонье в 1904-05, в дальнейшем развивали русские и советские учёные - Н. И. Андрусов, В. И. Вернадский, И. М. Губкин, Н. Д. Зелинский и др. Сапропелевая гипотеза ассимилирована современной теорией осадочно-миграционного происхождения Н. Развитию представлений о природе Н. и условиях формирования её залежей способствовали также труды немецкого учёного К. Энглера, американских геологов Дж. Ньюберри, Э. Ортона, Д. Уайта, русских и советских учёных - Г. П. Михайловского, Д. В. Голубятникова, М. В. Абрамовича, К. И. Богдановича и др.
Четвёртый период характеризуется организацией широких геолого-геохимических исследований, направленных на решение проблемы нефтеобразования и органически связанной с ней проблемы нефтематеринских отложений. В СССР такие работы осуществлены А. Д. Архангельским в 1925-26. В США аналогичные исследования начаты в 1926 П. Траском. В 1932 была опубликована классическая работа И. М. Губкина "Учение о нефти", сыгравшая огромную роль в развитии представлений о генезисе Н. и формировании её залежей. В 1934 в Н., асфальтах и ископаемых углях были найдены порфирины, входящие в молекулу хлорофилла и др. природных пигментов.
Начало пятого периода связано с открытием в 50-е гг. 20 в. (в СССР - А. И. Горской, в США - Ф. Смитом) нефтяных углеводородов в осадках водоёмов различного типа (в озёрах, заливах, морях, океанах). Дальнейшему прогрессу в этой области способствовали работы многих учёных и коллективов исследователей в разных странах: в СССР (А. Д. Архангельский, В. И. Вернадский, А. П. Виноградов, И. М. Губкин, Н. М. Страхов, А. А. Трофимук, А. М. Акрамходжаев, И. О. Брод, Н. Б. Вассоевич, В. В. Вебер, А. Ф. Добрянский, Н. А. Еременко, А. Э. Конторович, М. Ф. Мирчинк, С. Н. Неручев, К. Ф. Родионова, В. А. Соколов, В. А. Успенский и др.), в США (Ф. М. Ван-Тайл, К. Зобелл, У. Майншайн, А. Леворсен, Дж. Смит, Ф. Смит, Дж. Хант, Х. Хедберг, Э. Эванс, П. Эйбелсон, Дж. Эрдман и др.), во Франции (Б. Тиссоидр.), в ГДР (Р. Майнхольд, П. Мюллеридр.), в ФРГ (М. Тайхмюллер, Д. Вельте и др.), а также в Японии, Великобритании и др. Убедительные доказательства биогенной природы нефте-материнского вещества были получены в результате детального изучения эволюции молекулярного состава углеводородов и их биохимических предшественников (прогениторов) в исходных организмах, в органическом веществе осадков и пород и в различных Н. из залежей. Важным явилось обнаружение в составе Н. хемофоссилий - весьма своеобразных, часто сложно построенных молекулярных структур явно биогенной природы, т. е. унаследованных (целиком или в виде фрагментов) от органического вещества. Изучение распределения стабильных изотопов углерода (C12, C13) в Н., органическом веществе пород и в организмах (А. П. Виноградов, Э. М. Галимов) также подтвердило неправомочность неорганических гипотез. Было установлено, что Н. - результат литогенеза. Она представляет собой жидкую (в своей основе) гидрофобную фазу продуктов фоссилизации (захоронения) органического вещества (керогена) в водно-осадочных отложениях. Нефтеобразование - стадийный, весьма длительный (обычно много млн. лет) процесс, начинающийся ещё в живом веществе. Выделяется ряд стадий: подготовительная, во время которой под влиянием биохимических и биокаталитических факторов образуется диффузно рассеянная в материнской породе Н. (микронефть); главная, когда в результате битуминизации генерируется основная масса микронефти, происходит её "созревание", сближение по составу с собственно Н. и миграция в коллекторы, а по ним в ловушки; постумная, когда усиливается накопление низкомолекулярных углеводородов, обусловливающее образование обычно лёгкой газорастворённой Н. - газоконденсата; постепенно газы становятся всё более "сухими" (т. е. богатыми CH4). И. М. Губкин выделял также стадию разрушения нефтяных месторождений.
Считается, что основным исходным веществом Н. обычно является планктон, обеспечивающий наибольшую биопродукцию в водоёмах и накопление в осадках органического вещества сапропелевого типа, характеризующегося высоким содержанием водорода (благодаря наличию в керогене алифатических и алициклических молекулярных структур). Породы, образовавшиеся из осадков, содержащих такого типа органическое вещество, потенциально нефтематеринские. Чаще всего это глины, реже - карбонатные и песчано-алевритовые породы, которые в процессе погружения достигают верхней половины зоны мезокатагенеза (см. Катагенез), где вступает в силу главный фактор нефтеобразования - длительный прогрев органического вещества при температуре от 50 ?С и выше. Верхняя граница этой главной зоны нефтеобразования располагается на глубине от 1,3-1,7 км (при среднем геотермическом градиенте 4 ?С/100 м) до 2,7-3 км (при градиенте 2 ?С/100 м) и фиксируется сменой буроугольной степени углефикации органического вещества каменноугольной. Главная фаза нефтеобразования приурочена к зоне, где углефикация органического вещества достигает степени, отвечающей углям марки Г (см. Каменный уголь). Эта фаза характеризуется значительным усилением термического и (или) термокаталитического распада полимерлипоидных и др. компонентов керогена. Образуются в большом количестве нефтяные углеводороды, в том числе низкомолекулярньге (C5-C15), почти отсутствовавшие на более ранних этапах превращения органического вещества. Эти углеводороды, дающие начало бензиновой и керосиновой фракциям Н., значительно увеличивают подвижность микронефти. Одновременно, вследствие снижения сорбционной ёмкости материнских пород, увеличения внутреннего давления в них и выделения воды в результате дегидратации глин, усиливается перемещение микронефти в ближайшие коллекторы. При миграции по коллекторам в ловушки Н. всегда поднимается, поэтому её максимальные запасы располагаются на несколько меньших глубинах, чем зона проявления главной фазы нефтеобразования (рис. 4), нижняя граница которой обычно соответствует зоне, где органическое вещество пород достигает степени углефикации, свойственной коксовым углям (К). В зависимости от интенсивности и длительности прогрева эта граница проходит на глубинах (имеются в виду максимальной глубины погружения за всю геологическую историю данной серии осадочных отложений) от 3-3,5 до 5-6 км.
Н. находится в недрах в виде скоплений различного объёма от нескольких мм3 до нескольких десятков млрд. м3. Практический интерес имеют залежи Н., представляющие её скопления с массой от нескольких тыс. т и больше, находящиеся в пористых и проницаемых породах-коллекторах. Различают 3 основных типа коллекторов: межгранулярные (главным образом песчаные и алевритовые породы), кавернозные (например, карстово-кавернозные, рифогенные и др. известняки) и трещинные (карбонатные, кремнистые и др. трещиноватые породы). Залежь обычно располагается под слабопроницаемыми породами, слагающими покрышку.
Каждая залежь Н. находится в ловушке, задержавшей мигрировавшие Н. и газ и сохранявшей их в течение длительного времени. Можно выделить 3 основных типа ловушек: замкнутые, полузамкнутые и незамкнутые. Первые 2 типа связаны с первичным выклиниванием (стратиграфическое несогласие, тектоническое экранирование) коллекторов (рис. 5) и поэтому именуются ловушками выклинивания. Незамкнутые ловушки являются гидравлическими - в них газ и Н. удерживаются в сводовой части антиклинального перегиба слоев (весьма распространённый тип залежей Н.) или выступа подземного рельефа (например, захороненного рифа). Наиболее приподнятую часть ловушки иногда занимает газ ("газовая шапка"); в этом случае залежь называется газонефтяной; под Н. располагается вода. Н. залегает на разных глубинах, вплоть до 6-7 км, однако на глубине 4,5-5 км нефтяные залежи всё чаще сменяются газовыми и газоконденсатными. Максимальное число залежей Н. располагается в интервале 0,5-3 км, а наибольшие запасы сосредоточены в пределах 0,8-2,4 км.
III. Нефтегазоносные бассейны, области, районы, месторождения
Обязательным условием нефтеобразования является существование крупных осадочных бассейнов, в процессе развития которых осадки (породы), содержащие углеродистое органическое вещество, могли при опускании достичь зоны, где осуществляется главная фаза нефтеобразования. Выделение осадочных бассейнов, являющихся родиной Н., имеет большое значение при нефтегазогеологическом районировании территорий и акваторий. Такие бассейны сильно варьируют по размерам - от нескольких тыс. до нескольких млн. км2, однако около 80% их имеют площадь от 10 тыс. до 500 тыс. км2. Всего в современном структурном плане Земли насчитывается (если исключить небольшие, преимущественно межгорные) около 350 таких бассейнов. Промышленная нефтегазоносность установлена в 140 бассейнах; остальные являются перспективными. По тектоническому строению среди осадочных бассейнов различают внутриплатформенные (около 30%), внутрискладчатые (около 35%), складчато-платформенные, или краевых прогибов (около 15%), периокеанические платформенные (около 15%) и др. К кайнозойским отложениям приурочено около 25% всех известных запасов Н., к мезозойским - 55%, к палеозойским - 20%. В пределах нефтегазоносных бассейнов выделяют нефтегазоносные области, районы и (или) зоны, характеризующиеся общностью строения и автономией.
Месторождения Н. являются основной низшей единицей районирования. Это участки земной коры площадью в десятки - сотни, редко тысячи км2, имеющие одну или несколько залежей Н. в ловушках (рис. 6). Большей частью это участки, где Н. собирается путём боковой или реже вертикальной миграции из зон нефтеобразования.
В мире известно (1973) около 28 тыс. месторождений Н.; из них 15-20% газонефтяные. Распределение месторождений по запасам подчинено закону, близкому к логнормальному. На долю месторождений с общими геологическими запасами каждого свыше 3 млн. т (извлекаемые запасы Н. обычно составляют около 1/4-1/2 геологических) приходится лишь 1/6 всех месторождений; из них более 400 находится в прибрежных зонах моря. Около 85% мировой добычи Н. дают 5% разрабатываемых месторождений; среди них в 1972 насчитывалось 27 гигантов с начальными извлекаемыми запасами каждого, превышающими 0,5 млрд. т. Больше всего таких месторождений на Ближнем Востоке. Только в двух из них - Гавар (Саудовская Аравия) и Бурган (Кувейт) - сосредоточено более 20% всех разведанных запасов Н. мира (без социалистических стран).
Месторождения Н. выявлены на всех континентах (кроме Антарктиды) и на значительной площади прилегающих акваторий (см. карту).
На территории СССР месторождения Н. были открыты в 19 в. на Апшеронском полуострове (см. Бакинский нефтегазоносный район), в районе Грозного, Краснодарском крае, на полуострове Челекен, в Тимано-Печорской области и на острове Сахалин. Накануне и после Великой Отечественной войны 1941-45 открыты и введены в разработку месторождения в Волго-Уральской нефтегазоносной области, позже выявлены месторождения в Западной Туркмении, в Казахстане (см. Мангышлакский нефтегазоносный район), в Ставропольском крае, на Украине и в Белоруссии. В 50-60-х гг. 20 в. был открыт один из крупнейших в мире Западно-Сибирский нефтегазоносный бассейн, в пределах которого обнаружены значительные месторождения Н. (табл. 1). Табл. 1.- Важнейшие нефтяные месторождения ряда социалистических стран (1973)
Страна, название месторождения, год открытия
Нефтегазоносные бассейны, области, районы
Продуктивные отложения
Плотность нефти, г/см3
Содержание S в нефти, %
 
средняя глубина, м
геологический возраст
литологический состав СССР
 
Арланское, 1955 Волго-Уральская 1200
карбон
песчаники и известняки 0,900 3,15
 
Балаханы-Сабунчи, 1871
Южно-Каспийская 1500
плиоцен
песчаники 0,865-0,940 0,2
 
Западно-Тэбукское, 1959
Тимано-Печорский 1900
девон
песчаники 0,852 0,50
 
Ленинское, 1956
Южно-Каспийская 2000
плиоцен
пески 0,860 0,2
 
Нефтяные Камни*, 1951
Южно-Каспийская 1000
плиоцен
песчаники 0,820-0,925 0,2
 
Ромашкинское, 1948 Волго-Уральская 1500
девон
песчаники 0,810 1,7
 
Самотлорское, 1965
Западно-Сибирский 2000
нижний мел
песчаники 0,850 0,76
 
Старогрозненское, 1893 Предкавказская 300-3000
миоцен и
песчаники и 0,850 0,2
 
верхний мел
известняки 0,850 0,2
 
Туймазинское, 1937 Волго-Уральская 1480
девон и карбон
песчаники 0,850 1,50
 
Узеньское, 1961 Мангышлакский 800
юра
песчаники 0,855 0,2
  Болгария
 
Долни-Дыбник, 1962 Мизийская 3400
триас
известняки 0,814 0,12
 
Венгрия      
 
Будафапуста, 1937 Панонская 1000
миоцен
песчаники 0,833 -
  Китай  
 
Карамайское, 1955 Джунгарская 200
триас
песчаники 0,860 -
  Румыния
 
Кыштна-Драгонянска, 1883 Плоештинская
600
миоцен
песчаники
0,850
0.20
 
* В Каспийском море.
Среди др. социалистических стран ряд месторождений имеется в Румынии и Китае, а также на территории Югославии, Польши, Венгрии. Единичные мелкие месторождения открыты в Болгарии, ГДР и Монголии.
Среди развитых капиталистических и развивающихся стран наиболее крупные месторождения открыты в странах Ближнего и Среднего Востока (табл. 2). Крупные месторождения Н. открыты в 50-60-х гг. 20 в. также в странах Северной и Западной Африки (Ливия, Алжир, Нигерия и Ангола), в Австралии и Юго-Востоке Азии (Индонезия, Бруней), несколько меньшие по запасам - в Индии, Бирме, Малайзии и совсем мелкие - в Японии. В США известно свыше 13 000 (в основном мелких) месторождений Н.; наиболее крупное открыто на Аляске (Прадхо-Бей), второе по величине - в Техасе (Ист-Тексас), несколько меньшие (по запасам) месторождения известны в Калифорнии (см. Калифорнийская нефтеносная область), Оклахоме и др. штатах (см. Мексиканского залива нефтегазоносный бассейн). Крупные месторождения Н. выявлены в Канаде и Мексике. В Южной Америке месторождения с большими запасами открыты в Венесуэле, где расположено одно из крупнейших месторождений-гигантов Боливар, объединяющее группу месторождений (например, Лагунильяс, Бачакеро, Тиа-Хуана) на сев.-вост. побережье озера Маракайбо (см. Маракайбский нефтегазоносный бассейн); единичные крупные месторождения имеются в Аргентине, Колумбии, Бразилии, на острове Тринидад и в смежных с ним акваториях. В Западной Европе крупные месторождения открыты лишь в акватории Северного моря (на шельфах Великобритании, Норвегии и Дании).
Месторождения Н. открыты во многих акваториях: Каспийского, Чёрного, Северного, Средиземного, Яванского, Южно-Китайского, Японского и Охотского морей, Персидского, Суэцкого, Гвинейского, Мексиканского, Кука и Пария заливов, пролива Басса, прибрежных частей Атлантического (вблизи Анголы, Конго, Бразилии, Аргентины, Канады), Тихого (вблизи Калифорнии, Перу и Экуадора) и Индийского (вблизи Сев.-Зап. Австралии) океанов. (О размерах добычи по странам см. Нефтяная промышленность.) Табл. 2.- Важнейшие нефтяные месторождения развитых капиталистических и развивающихся стран (1973) Страна, название месторождения, год открытия Запасы извлекаемые, млн. т Продуктивные отложения Средняя плотность, г/см3 Содержание серы, % начальные на 1 января 1973 средняя глубина, м геологический возраст литологический состав Ближний и Средний Восток Ирак
Киркук, 1957 2115 1322 1300
палеоген-неоген
известняки 0,845 2,0
Эр-Румайла, 1953 1852 1639 3300
мел
известняки 0,850 - Иран
Гечсаран, 1928 1557 1169,4 2130
палеоген-неоген
известняки 0,869 1,66
Марун, 1964 1472 1279,9 3350
палеоген-неоген
известняки 0,859 -
Агаджари, 1938 1367 663,2 1980
палеоген-неоген
известняки 0,856 1,36
Ахваз, 1958 1246 1144,5 2740
палеоген-неоген
известняки 0.861 1,66
Сассан2, 1966 203 175 2100
юра
известняки 0,855 - Катар
Духан, 1940 323 152 2200
юра
известняки 0,820 1,3 Кувейт
Бурган, 1938 2240 1140 1460
мел
песчаники 0,871 2,5 Объединённые Арабские эмираты Абу-Заби
Мурбан, 1960 439 267,3 2600
юра
известняки 0,830 0,6
Дубаи
Фатех2, 1966 216 198,9 2600
юра
известняки 0.861 -
Саудовская Аравия Гавар, 1948 10142 9784 2040
юра
известняки 0,845 1,7-2,1
Сафання", 1951 2913 2583 1550
мел
известняки 0,898 2,90
Абкайк, 1940 1120 578 2030
юра
известняки 0,835 1,30
Манифа2, 1957 1015 1002 2420
юра
известняки 0,887 3,00
Берри, 1964 999 961 2270
юра
известняки 0,860 2,40 Северная Америка Канада  
Пембина, 1953 240 143 1940
мел
песчаники 0,8524 0,42
Суан-Хилс, 1957 173 140 2660
девон
известняки 0,8251 0,80
Редуотер, 1948 107 47 975
девон
известняки 0,8498 0,42
Ледюк, 1947 78 37 930
девон
известняки 0,8251 0,30 Мексика  
Поса-Рика, 1930 270 132 2160
мел
известняки 0,845 1,77
Эбано-Пануко, 1901 204 59,4 492
мел
известняки 0,986 5,38
Наранхос-Серро, 1909 173 2,4 440
мел
известняки 0,934 3,80
Аренке3, 1970 142,5 142 3640
мел
известняки 0,898 - США  
Прадхо-Бей (Аляска), 1968 1400 1400 2640
триас
песчаники 0,8735 -
(Техас), 1930 790 250 1100
мел
песчаники 0,830 0,31
Уилмингтон (Калифорния), 1932 332 116 311
палеоген-неоген
песчаники 0,874 1,00
Панхандл (Техас), 1910 187,5 20,7 950
Пермь
известняки 0,835 0,13      
доломит    
Элк-Хилс (Калифорния), 1919 177 138,5 700
палеоген-неоген
песчаники 0,78-0,93 0,68
Хантингтон-Бич (Калифорния), 1920 166 19,1 640
палеоген-неоген
песчаники 0,887-0,986 1,57
Шо-Вел-Там (Оклахома), 1955 155 29,0 580
палеоген-неоген
песчаники
0,850 -
Лонг-Бич (Калифорния), 1921 126,5 3,4 1340
палеоген-неоген
песчаники 0,865-0,910 1,29
Трейдинг-Бей4 (Аляска), 1963 56,6 3,1 3500
палеоген-неоген
песчаники 0,834 0,50 Южная Америка Аргентина  
Чубут, 1907 105 27,7 1830
мел
известняки 0,907-0,919 -
Санта-Крус, 1944 97 18 1830
мел
известняки 0,815 - Бразилия  
Агуа-Гранди, 1951 36,6 8,7 1500
девон
известняки 0,815-0,835 - Венесуэла  
Лагунильяс5, 1926 1500 356 914
палеоген-неоген
песчаники 0,902 2,18
Бачакеро", 1930 962 327 1050
палеоген-неоген
песчаники 0,912 2,62
Тиа-Хуана", 1928 668 271 914
палеоген-неоген
песчаники 0,935 1,49
Лама, 1957 568 339 2535
палеоген-неоген
песчаники 0,863 -
Кабимас, 1917 232 57,4 670
палеоген-неоген
песчаники 0,911 1,71
Ла-Пас, 1925 225 118,8 2450
мел
известняки 0,863 -
Ламар5, 1958 184 103,6 3960
палеоген-неоген
песчаники 0,856 -
Мене-Гранде, 1914 175 89,5 1260
палеоген-неоген
песчаники 0.944 2,65 Колумбия  
Орито, 1963 137 126,3 2000
мел
известняки 0,853 - Африка Алжир  
Хасси-Месауд, 1956 1420 1230 3350
кембрий-ордовик
песчаники 0,811 0,1
Зарзаитин, 1958 149 79 1400
девон-карбон
песчаники 0,815 - Ангола  
Кабинда6, 1966 182 162,6 2350
мел
песчаники 0,913 - Арабская Республика Египет  
Эль-Морган1, 1965 219 166,4 1950
палеоген-неоген
песчаники 0,865 - Ливия  
Серир, 1961 1105 101,7 2740
мел
песчаники 0,836 -
Зельтен, 1959 551 342,8 2320
мел
песчаники - 0,23
Джало, 1961 558 431,7 1920
палеоген-неоген
песчаники 0,847 0,52 Нигерия  
Бому, 1968 85 55,4 2290
палеоген-неоген
песчаники 0,859 -
Мерен7, 1965 69,5 54,8 2740
палеоген-неоген
песчаники 0,830 0,1 Юго-Восточная Азия и Австралия
Бруней  
Сериа, 1928 137 29,2 1600
палеоген-неоген
песчаники 0,845 -
Ампа8, 1963 137 113,6 2480
палеоген-неоген
песчаники 0,820 - Индонезия  
Минас, 1944 987 779,6 730
палеоген-неоген
песчаники 0,860 0,1
Дури, 1941 294 261,1 300
палеоген-неоген
песчаники 0,918 - Австралийский Союз  
Кингфиш9, 1967 127 117,4 2575
палеоген-неоген
песчаники 0,793 -
Халибут9, 1967 83 63,6 2290
палеоген-неоген
песчаники 0,811 - 3ападная ЕвроПа Великобритания  
Фотиз10, 1970 266 266 2440
палеоген
песчаники 0,837 -
Брент10, 1971 200 200 3200
палеоген
известняки   - Норвегия  
Экофиск10, 1970 155 153,2 3300
мел
известняки 0,845 0,18
Примечание. Месторождения расположены в акваториях: 1 - Суэцкий залив; 2 - Персидский залив; 3 - Мексиканский залив; 4 - залив Кука; 5 - озеро Маракайбо; 6 - шельф Атлантического океана; 7 - Гвинейский залив; 8 - Южно-Китайское море; 9 - пролив Басса; 10 - Северное море.
? IV. Разведка
Цель нефтеразведки - выявление, геолого-экономическая оценка и подготовка к разработке промышленных залежей Н. и газа. Нефтеразведка производится с помощью геологических, геофизических, геохимических и буровых работ, выполняемых в рациональном сочетании и последовательности. Процесс геологоразведочных работ на Н. и газ в СССР подразделяется на два этапа: поисковый и разведочный.
Поисковый этап включает три стадии: региональные геолого-геофизические работы, подготовка площадей к глубокому поисковому бурению и поиски месторождений. Разведочный этап на стадии не разделяется и завершается подготовкой месторождения к разработке.
На первой стадии поискового этапа в бассейнах с неустановленной нефтегазоносностью либо для изучения ещё слабо исследованных тектонических зон или нижних структурных этажей в бассейнах с установленной нефтегазоносностью проводятся региональные работы. Для этого осуществляются геологическая, аэромагнитная и гравиметрическая съёмки (1: 1 000 000 - 1 200 000), геохимические исследования вод и пород, профильное пересечение территории электро- и сейсморазведкой, бурение опорных и параметрических скважин (см. Геофизические методы разведки, Геохимические поиски, Опорное бурение, Параметрическое бурение). В результате выявляются возможные продуктивные комплексы отложений и нефтегазоносные зоны, даётся количественная оценка прогноза нефтегазоносности, и устанавливаются первоочередные районы для дальнейших поисковых работ. На второй стадии поисков производится более детальное изучение нефтегазоносных зон путём структурно-геологической съёмки, детальной гравиразведки, электроразведки, сейсморазведки и структурного бурения. Составляются структурная и др. виды карт в масштабах 1: 100 000 - 1: 25 000. Детальное изучение строения площадей для подготовки их к поисковому бурению производится сейсморазведкой и структурным бурением. Преимущество отдаётся сейсмической разведке, которая позволяет изучать строение недр на большую глубину. На этой стадии уточняется оценка прогноза нефтегазоносности, а для структур, расположенных в зонах с доказанной нефтегазоносностью, подсчитываются перспективные запасы. На третьей стадии поисков производится бурение поисковых скважин с целью открытия месторождений. Поисковые скважины закладываются в присводовых частях антиклиналей, брахиантиклиналей, куполов (рис. 7, а) или в районах развития ловушек (рис. 7, б). Первые поисковые скважины для изучения всей толщи осадочных пород, как правило, бурят на максимальную глубину. Обычно первым разведуется верхний этаж, затем более глубокие. В результате поисков даются предварительная оценка запасов вновь открытых месторождений и рекомендации по их дальнейшей разведке.
Разведочный этап - завершающий в геологоразведочном процессе. Основная цель этого этапа - подготовка месторождения к разработке. В процессе разведки должны быть оконтурены залежи, определены литологии, состав, мощность, нефтегазонасыщенность, коллекторские свойства продуктивных горизонтов, изучены изменения этих параметров по площади, исследованы физико-химические свойства Н., газа и воды, установлена продуктивность скваж

Смотрите также: