Большая советская энциклопедия

Отношение (математич.)


Отношение (математич.)
Отношение двух чисел, частное от деления первого числа на второе. О. двух однородных величин называется число, получающееся в результате измерения первой величины, когда вторая выбрана за единицу меры. Если две величины измерены при помощи одной и той же единицы меры, то их О. равно О. измеряющих их чисел.

О. длин двух отрезков может выражаться рациональным или иррациональным числом. В первом случае отрезки называются соизмеримыми, а во втором - несоизмеримыми. Математики древнего мира не знали иррациональных чисел; для них понятие О. двух отрезков не сводилось к понятию числа; не зависимая от понятия числа геометрическая теория О. величин играла у них самостоятельную роль и заменяла в известном смысле теорию действительных чисел (см. Число). Действительно, по Евклиду, четыре отрезка а, b, а ? b ? составляют пропорцию а: b = а ?: b ?, если для любых натуральных чисел m и n выполняется одно из соотношений = nb, mа > nb, mа < nb всякий раз одновременно с соответствующим соотношением ? = nb ?; ? > nb? или ? < nb ?. В случае несоизмеримости а и b это означает, что разбиение всех рациональных чисел (х = m /n) на два класса по признаку а > xb или а < xb совпадает с разбиением по признаку а ? > xb ?или a ? < xb ? - в этом состоит идея современной теории дедекиндовых сечений. О двойном (иначе - сложном, ангармоническом) О. см. Двойное отношение.

Смотрите также: