Равномерная непрерывность
Равномерная непрерывность, важное понятие математического анализа. Функция f (x) называется равномерно-непрерывной на данном множестве, если для всякого e > 0 можно найти такое d = d(e) > 0, что êf (x1) - f (x2)ê<e для любой пары чисел x1 и x2 из данного множества, удовлетворяющей условию ïx1-x2ï< d (ср. Непрерывная функция).Например, функция f (x) = x2 равномерно непрерывна на отрезке [0, 1]: если , то ?(так как для 0 £ x1 £ 1, 0 £ x2 £ 1 обязательно ïx1 + x2ï£ 2). Вообще функция, непрерывная в каждой точке отрезка [а, b], равномерно непрерывна на этом отрезке (теорема Кантора). Для интервала эта теорема может не иметь места.
Так, например, функция непрерывна в каждой точке интервала 0 < x < 1, но не является равномерно непрерывной в этом интервале, потому что, например, при e = 1 для любого d > 0 (d <? 1) мы имеем удовлетворяющие неравенству ïx1 - x2ï < d числа x1 = ?и x2 = d, для которых ê