Родрига формулы
Родрига формулы, 1) выражение Лежандра многочленов в виде: ,
данное французским математиком Б. О. Родригом (В. О. Rodrigues) в 1814. Немецкий математик К. Якоби в 1859 обобщил эту формулу на случай Якоби многочленов. В этом случае она имеет вид .
Р. ф. может быть положена в основу теории многочленов Лежандра и Якоби; из неё, в частности, легко выводятся основные свойства этих многочленов. Из неё вытекает также, что многочлены Лежандра и Якоби являются частными случаями гипергеометрической функции.
2) Выражения для производных единичного вектора нормали m к поверхности в случае, когда параметрической сетью на поверхности является сеть линий кривизны. Если r - радиус-вектор точки М поверхности, R1 и R2 - главные радиусы кривизны в точке М, то Р. ф. могут быть записаны следующим образом: , ,
(u и u - параметры вдоль линий кривизны). Эти формулы установлены Б. О.Родригом в 1815.