Большая советская энциклопедия

Синтетические кристаллы

Синтетические кристаллы, кристаллы, выращенные искусственно в лабораторных или заводских условиях. Из общего числа С. к. около 104 относятся к неорганическим веществам. Некоторые из них не встречаются в природе. Однако первое место занимают органические С. к., насчитывающие сотни тысяч разнообразных составов и вообще не встречающиеся в природе. С другой стороны, из 3000 кристаллов, составляющих многообразие природных минералов, искусственно удаётся выращивать только несколько сотен, из которых для практического применения существенное значение имеют только 20-30 (см. табл.). Объясняется это сложностью процессов кристаллизации и техническими трудностями, связанными с необходимостью точного соблюдения режима выращивания монокристаллов.

Первые попытки синтеза кристаллов, относящиеся к 16-17 вв., состояли в перекристаллизации воднорастворимых кристаллических веществ, встречающихся в виде кристаллов в природе (сульфаты, галогениды). После расшифровки состава природных минералов появились попытки синтеза минералов из порошков с использованием техники обжига. Этим методом были получены мелкие С. к. В начале 20 в. синтезом кристаллов занимались Е. С. Федоров и Г. В. Вульф, которые исследовали условия кристаллизации воднорастворимых соединений и усовершенствовали аппаратуру. В дальнейшем А. В. Шубников разработал общие принципы образования кристаллов из водных растворов [сегнетова соль, дигидрофосфат калия и др., см. рис. 1, 2] и из расплавов (однокомпонентных и многокомпонентных систем), под его руководством была создана первая фабрика С. к.

С. к. кварца получают в гидротермальных условиях. Маленькие "затравочные" кристаллы различных кристаллографических направлений вырезаются из природных кристаллов кварца. Хотя кварц широко распространён в природе, однако его природные запасы не покрывают нужд техники, кроме того, природный кварц содержит много примесей. С. к. кварца массой до 15 кг выращивают в автоклавах в течение многих месяцев, а особо чистые кристаллы (оптический кварц) растут несколько лет (рис. 3, 4). Наиболее распространённые синтетические кристаллы Название Химическая формула Методы выращивания Средняя величина кристаллов Области применения

Кварц S2 Гидротермаль-
ный От 1 до 15 кг, 300´200´150 мм Пьезоэлектрические преобразователи, ювелирные изделия, оптические приборы
Корунд Al2O3 Методы Вернейля и Чохральского, зонная плавка Стержни диаметром 20-40 мм, длиной до 2 м, пластинки 200´300´30 мм Приборостроение, часовая промышленность, ювелирные изделия
Германий Ge Метод Чохральского От 100 г до 10 кг, цилиндры 200 мм ´ 500 мм Полупроводниковые приборы
Кремний Si То же То же То же
Галогениды KCl, NaCl То же От 1 до 25 кг, 100´100´600 Сцинтилляторы
Сегнетова соль KNaC4H4O6´4H2O Кристаллизация из растворов От 1 до 40 кг, 500´500´300 мм Пьезоэлементы
Дигидрофосфат калия KH2PO4 То же От 1 до 40 кг, 500´500´300 мм То же
Алюмоиттрие-
вый гранат Y3Al5O12 Метод Чохральского, зонная плавка 40´40´150 мм 30´200´150 мм Лазеры, ювелирные изделия
Иттриево-же-
лезистый гранат Y3Fe5O12 Кристаллизация из растворов-расплавов 30´30´30 мм Радиоакустическая промышленность, электроника
Гадолиний-галлиевый гранат Gd3Ga5O12 Метод Чохральского 20´30´100 мм Подложки для магнитных плёнок
Алмаз C Кристаллизация при сверхвысоких давлениях От 0,1 до 3 мм Абразивная промышленность
Ниобат лития LiNbO3 Метод Чохральского 10´10´100 мм Пьезо- и сегнетоэлементы
Нафталин C10H8 Метод Киропулоса Блоки в несколько кг Сцинтилляционные приборы
Бифталат калия C8H5O4K Кристаллизация из водных растворов 40´100´100 мм Рентгеновские анализаторы, нелинейная оптика
Кальцит CaCO3 Гидротермальный 10´30´30 мм Оптические приборы
Сульфид кадмия CdS Рост из газовой фазы Стержни 20´20´100 мм Полупроводниковые приборы
Сульфид цинка ZnS То же Стержни 20´20´100 мм  
Арсенид галлия GaAs Газотранспорт-
ные реакции Стержни 20´20´100 мм  
Фосфид галлия GaP То же То же То же
Молибдаты редкоземельных элементов Y2(MoO4)3 Комбинирован-
ный метод Чохральского 10´10´100 мм Лазеры
Двуокись циркония ZrO2 Высокочастот-
ный нагрев в холодном контейнере Блоки около 2 кг, столбчатые кристаллы 100´10´50 мм Ювелирные изделия
Двуокись гафния HfO2 То же То же То же
Вольфрамат кальция CaWO4 То же 10´10´100 мм Лазеры
Алюминат иттрия IAlO3 Метод Чохральского 10´10´100 мм То же
Алюминий (трубы разных сечений) Al Метод Степанова Длина 103 мм, диаметр 3-200 мм Металлургия
Мир геометрически правильных кристаллов связан в сознании людей с миром драгоценных и поделочных камней. Поэтому усилия многих учёных были направлены на синтез алмаза, рубина, аквамарина, сапфира и др. В начале века были получены С. к. рубина из растворов в расплавах поташа и соды в виде кристалликов темно-малинового цвета. Позже (в конце 19 в.) французский учёный Вернейль изобрёл специальный аппарат для получения С. к. рубина, который в дальнейшем был усовершенствован. Порошок Al2O3 с добавкой нескольких % Cr2O3 непрерывно поступает в зону печи, где происходит горение водорода в кислороде. Капли расплавленной массы попадают затем на более холодный участок затравки и тотчас же кристаллизуются. В СССР работают аппараты системы С. К. Попова, которые позволяют получать С. к. рубина в виде стержней диаметром от 20 до 40 мм и Длина до 2 м - для лазеров, нитеводителей, а также для стекол космических приборов. Большую долю С. к. рубина потребляет часовая промышленность, но основным потребителем синтетического рубина является ювелирная промышленность. Добавка к Al2O3 примесей солей Ti, Со, Ni и других позволяет получить С. к. различной окраски, имитирующие окраску сапфиров, топазов, аквамаринов (рис. 5, 6) и других природных драгоценных камней.
С. к. алмаза были получены в 50-х гг. из порошка графита, смешанного с Ni. Смесь прессуется в виде небольших (2-3 см) дисков, которые затем нагреваются до температуры 2000-3000 ?С при давлении в 100-200 тыс. am. В этих условиях графит превращается в алмаз. Величина С. к. алмаза порядка десятых долей мм. В особых условиях удаётся получить С. к. алмаза до 2-3 мм. В СССР создана алмазная промышленность для нужд главным образом буровой техники. С. к. алмазов, конкурирующие с природными ювелирными образцами, пока получены в небольших количествах.
Начиная с 50-х гг. развивается промышленность органических С. к. - нафталина, стильбена, толана, антрацена и др., применяющихся в сцинтилляционных устройствах (см., например, Сцинтилляционный счётчик). Синтез этих кристаллов осуществляется в основном методом Чохральского. По размерам эти С. к. соперничают с крупными неорганическими (воднорастворимыми) кристаллами. Наиболее применяемые полупроводниковые кристаллы (Ge, Si, Ga, As и др.) в природе не встречаются. Все они выращиваются из расплавов в виде цилиндров диаметром от 10 до 20 см и Длина 30-50 см.
В лабораторных условиях из растворов расплавов выращивают С. к. феррогранатов и изумрудов. Однако промышленного развития эти методы ещё не получили. Развиваются исследования, связанные с промышленным выпуском синтетических драгоценных камней на основе алюмоиттриевых гранатов (гранатиты) (рис. 2) и двуокисей циркония и гафния (фианиты). Это - С. к. с окраски, имитирующие изумруды, топазы и алмазы за счёт большого широкой гаммой преломления света.
Лит.: Федоров Е. С., Процесс кристаллизации, "Природа", 1915, декабрь; Вульф Г. В., Кристаллы, их образование, вид и строение, М., 1917; Шубников А. В., Как растут кристаллы, М. - Л., 1935; Аншелес О. М., Татарский В. Б., Штернберг А. А., Скоростное выращивание однородных кристаллов из растворов, [Л.], 1945; Попов С. К., Новый производственный метод выращивания кристаллов корунда, "Изв. АН СССР. Серия физическая", 1946, т. 10,Ї5-6; Штернберг А. А., Кристаллы в природе и технике, М., 1961; Условия роста и реальная структура кварца, в кн.: IV Всесоюзное совещание по росту кристаллов, Ер., 1972, ч. 2, с. 186; Мильвидский М. Г., Освенский В. Б., Получение совершенных монокристаллов полупроводников при кристаллизации из расплава, там же, ч. 2, с. 50; Багдасаров Х. С., Проблемы синтеза крупных тугоплавких оптических монокристаллов, там же, ч. 2, с. 6; Тимофеева В. А., Дохновский И. Б., Выращивание иттриево-железистых гранатов из растворов - расплавов на точечных затравках в динамическом режиме, "Кристаллография", 1971, т. 16, в. 3, с. 616; Яковлев Ю. М., Генделев С. Ш., Монокристаллы ферритов в радиоэлектронике, М., 1975.
? В. А. Тимофеева.

Смотрите также: