Степенная функция
Степенная функция, функция f (x) = ха, где а - фиксированное число (см. Степень). При действительных значениях основания х и показателя а обычно рассматривают лишь действительные значения С. ф. xa. Они существуют, во всяком случае, для всех х > 0; если а - рациональное число с нечётным знаменателем, то они существуют также для всех х < 0; если же знаменатель рационального числа а чётный, либо если и иррационально, то xa не имеет действительного значения ни при каком х < 0. При х = 0 степенная функция xa равна нулю для всех а > 0 и не определена при а < 0; 0? определённого смысла не имеет. С. ф. (в области действительных значений) однозначна, за исключением тех случаев, когда а - рациональное число, изображаемое несократимой дробью с чётным знаменателем: в этих случаях она двузначна, причём её значения для одного и того же значения аргумента х > 0 равны по абсолютной величине, но противоположны по знаку. Обычно тогда рассматривается только неотрицательное, или арифметическое, значение С. ф. Для х >0 С. ф. - возрастающая, если а > 0, и убывающая, если а < 0. С. ф. непрерывна и дифференцируема во всех точках её области определения, за исключением точки х = 0, в случае 0 < а < 1 (когда непрерывность сохраняется, но производная обращается в бесконечность); при этом (xa)' = axa-1. Далее,
, при a ¹ -1;
в любом интервале, содержащемся в области определения подынтегральной функции.
Функции вида у = cxa, где с - постоянный коэффициент, играют важную роль в математике и её приложениях; при а = 1 эти функции выражают прямую пропорциональность (их графики - прямые, проходящие через начало координат, см. рис. 1), при а = -1 - обратную пропорциональность (графики - равносторонние гиперболы с центром в начале координат, имеющие оси координат своими асимптотами, см. рис. 2). Многие законы физики математически выражаются при помощи функций вида у = cxa (см. рис. 3); например, у = cx2 выражает закон равноускоренного или равнозамедленного движения (у - путь, х - время, 2c - ускорение; начальные путь и скорость равны нулю).
В комплексной области С. ф. za определяется для всех z ¹ 0 формулой:
, (*)
где k = 0, = 1, = 2,.... Если а - целое, то С. ф. za однозначна:
.
Если а - рациональное (а = p/q, где р и q взаимно просты), то С. ф. za принимает q различных значений:
где ek = ?- корни степени q из единицы: ?и k = 0, 1, ., q - 1. Если а - иррациональное, то С. ф. za - бесконечнозначна: множитель ea2kpi принимает для разных k различные значения. При комплексных значениях а С. ф. za определяется той же формулой (*). Например,
так что, в частности, , где k = 0, = 1, = 2,....
Под главным значением (za)0 С. ф. понимается её значение при k = 0, если -p< argz £ p (или 0 £ argz < 2p). Так, (za)= |za|eia arg z, (i)0=e -p/2 и т.д.