Большая советская энциклопедия

Стьюдента распределение

Стьюдента распределениес f степенями свободы, распределение отношения Т = X/Y независимых случайных величин Х и Y, где Х подчиняется нормальному распределению? с математическим ожиданием EX = 0 и дисперсией DX = 1, а fY2 имеет "Хи-квадрат" распределение с f степенями свободы. Функция распределения Стьюдента выражается интегралом

.

Если X1,..., Xn - независимые случайные величины, одинаково нормально распределённые, причём EXi= a и DXi= s2(i = 1,..., n), то при любых действительных значениях а и s > 0 отношение подчиняется С. р. с f = п-1 степенями свободы (здесь ). Это свойство было впервые (1908) использовано для решения важной задачи классической теории ошибок У. Госсетом (Англия), писавшим под псевдонимом Стьюдент (Student). Суть этой задачи заключается в проверке гипотезы а = a0 (a0 = заданное число, дисперсия s2 предполагается неизвестной). Гипотезу а =a0 считают не противоречащей результатам наблюдений X1,..., Xn, если справедливо неравенство , в противном случае гипотеза а = а0 отвергается (так называемый критерий Стьюдента). Критическое значение t = tn-1(a)представляет собой решение уравнения Sn-1(t) = 1 - , a - заданный значимости уровень (0 < a < ). Если проверяемая гипотеза а = а0 верна, то критерий Стьюдента, соответствующий критическому значению tn-1(a), может её ошибочно отвергнуть с вероятностью а.

С. р. используется для решения множества др. задач математической статистики (см. Малые выборки, Ошибок теория, Наименьших квадратов метод).? Лит.: Крамер Г., Математические методы статистики, пер. с англ., 2 изд., М., 1975.

Смотрите также: