Флюксий исчисление
Флюксий исчисление, наиболее ранняя форма дифференциального и интегрального исчислений. Возникло и в основных частях было развито в сочинениях И. Ньютона; основные факты Ф. и. были получены им в 1665=66. Задачи исчисления флюксий Ньютон формулировал так: "1. Длина проходимого пути постоянно (т. е. в каждый момент времени) дана; требуется найти скорость движения в предложенное время. 2. Скорость движения постоянно дана; требуется найти длину пройденного в предложенное время пути" (Ньютон И., Математические работы, пер. с лат., М. = Л., 1937, с. 45). Время Ньютон понимал как общий аргумент, к которому отнесены все переменные величины. Систему величин х, у, z,..., одновременно изменяющихся непрерывно в зависимости от времени, он называл флюентами (лат. fluens = текущий, от fluo = теку), скорости, с которыми изменяются флюенты, = флюксиями (лат. fluxio = истечение): , , . Т. о., флюксий являются производными флюент по времени. Бесконечно малые изменения флюент Ньютон назвал моментами (понятие момента в Ф. и. соответствует дифференциалу), момент независимого переменного он обозначил знаком о, момент флюенты х = знаком xo. Представление о существе операции отыскания флюксий и особенностях символики можно получить из следующего примера (см. там же, с. 50): "Пусть, например, дано уравнение x3 = axx + аху = y3 = 0.
Подставь в него и ?вместо х и у, ты получишь
Но по предположению x3 = axx + аху = y3 = 0. Поэтому вычеркни эти члены, а остальные раздели на о. При этом останется
Но так как мы предположили о бесконечно малой величиной, для того чтобы она могла выражать моменты величин, то те члены, которые на неё умножены, можно считать за ничто в сравнении с другими. Поэтому я ими пренебрегаю, и остаётся
Об обратной задаче Ф. и., обосновании Ф. и. и его истории см. в ст. Ньютон И. и Дифференциальное исчисление.
Ф. и., как особый вид дифференциального и интегрального исчисления со своеобразной символикой, развивалось только в работах английских математиков. В конце 17 = начале 18 вв. оно было вытеснено дифференциальным исчислением с символикой, более удобной и потому чаще употребляемой. Символы, принятые в Ф. и., частично сохранились в механике и в векторном анализе.
Лит.: Ньютон И., Математические работы, пер. с лат., М. = Л., 1937; его же, Математические начала натуральной философии, пер. с лат., М. = Л., 1936; Цейтен Г. Г., История математики в XVI и XVII веках, пер. с нем., 2 изд., М. = Л., 1938; Колмогорова. Н., Ньютон и современное математическое мышление, в кн.: Московский университет = памяти Исаака Ньютона. 1643=1943, М., 1946; Cajori F., A history of the conceptions of limits and fluxions in Great Britain, from Newton, to Woodhouse, Chi. = L., 1919.