Фотограмметрия
Фотограмметрия (от фото..., греч. grámma = запись, изображение и ...метрия), научно-техническая дисциплина, занимающаяся определением размеров, формы и положения объектов по их изображениям на фотоснимках. Последние получают как непосредственно кадровыми, щелевыми и панорамными фотоаппаратами, так и при помощи радиолокационных, телевизионных, инфракрасных-тепловых и лазерных систем (см. Аэрометоды). Наибольшее применение, особенно в аэрофотосъёмке, имеют снимки, получаемые кадровыми фотоаппаратами. В теории Ф. такие снимки считаются центральной проекцией объекта. Уклонения от центральной проекции, вызванные дисторсией объектива, деформацией фотоматериала и др. источниками ошибок, учитываются по данным калибровки аэрофотоаппарата и снимков. В Ф. используются одиночные снимки и стереоскопические их пары. Эти стереопары позволяют получить стереомодель объекта. Раздел Ф., изучающий объекты по стереопарам, называется стереофотограмметрией.
Положение снимка в момент фотографирования определяют три элемента внутреннего ориентирования = фокусное расстояние фотокамеры f, координаты x0, y0 главной точки о (рис. 1) и шесть элементов внешнего ориентирования = координаты центра проекции S = XS, YS, ZS, продольный и поперечный углы наклона снимка a и w и угол поворота c.
Между координатами точки объекта и её изображения на снимке существует связь: ,???? (1)
где X, Y, Z и XS, YS, ZS = координаты точек М и S в системе OXYZ; X?, Y?, Z? = координаты точки m в системе SXYZ, параллельной OXYZ, вычисляемые по плоским координатам х и у: .???? (2)
Здесь a1 =cos acosc - sinasinwsinc a2 = - cosasinc - sinasin wcosc a3 = - sinacos w b1 =coswsinc b2 =coswcosc ?????(3) b3 = -sinw c1 =sinacosc + cosasinwsinc, c2 = - sinacosc + cosasinwcosc, c3 = cosacosw
= направляющие косинусы.
Формулы связи между координатами точки М объекта (рис. 2) и координатами её изображений m1 и m2 на стереопаре P1 = P2 имеют вид: ,?????? (4)
где ,???? (5)
BX, BY и BZ = проекции базиса В на оси координат. Если элементы внешнего ориентирования стереопары известны, то координаты точки объекта можно определить по формуле (4) (метод прямой засечки). По одиночному снимку положение точки объекта можно найти в частном случае, когда объект плоский, например равнинная местность (Z = const). Координаты х и у точек снимков измеряются на монокомпараторе или стереокомпараторе. Элементы внутреннего ориентирования известны из результатов калибровки фотоаппарата, а элементы внешнего ориентирования можно определить при фотографировании объекта или в процессе фототриангуляции. Если элементы внешнего ориентирования снимков неизвестны, то координаты точки объекта находят с использованием опорных точек (метод обратной засечки). Опорная точка = опознанная на снимке контурная точка объекта, координаты которой получены в результате геодезических измерений или из фототриангуляции. Применяя обратную засечку, сначала определяют элементы взаимного ориентирования снимков P1 = P2 (рис. 3) = a?1, c'1, a?2, w?2, c?2 в системе S1X?Y?Z?; ось Х которой совпадает с базисом, а ось Z лежит в главной базисной плоскости S1O1S2 снимка P1. Затем вычисляют координаты точек модели в той же системе. Наконец, используя опорные точки, переходят. от координат точек модели к координатам точек объекта.
Элементы взаимного ориентирования позволяют установить снимки в то положение относительно друг друга, которое они занимали при фотографировании объекта. В этом случае каждая пара соответственных лучей, например S1m1 и S2m2, пересекается и образует точку (m) модели. Совокупность лучей, принадлежащих снимку, называется связкой, а центр проекции = S1 или S2 = вершиной связки. Масштаб модели остаётся неизвестным, т.к. расстояние S1S2 между вершинами связок выбирается произвольно. Соответственные точки стереопары m1 и m2 находятся в одной плоскости, проходящей через базис S1S2. Поэтому ???? (6)
Полагая, что приближённые значения элементов взаимного ориентирования известны, можно представить уравнение (6) в линейном виде: a da1? + b da2? + с dw2? + d dc1? + e dc2? + l = V,???? (7)
где da1?,... e dm2? = поправки к приближённым значениям неизвестных, а,..., е = частные производные от функции (6) по переменным a1?,... c2?, l = значение функции (6), вычисленное по приближённым значениям неизвестных. Для определения элементов взаимного ориентирования измеряют координаты не менее пяти точек стереопары, а затем составляют уравнения (7) и решают их способом последовательных приближений. Координаты точек модели вычисляют по формулам (4), выбрав произвольно длину базиса В и полагая Xs1 = Ys1= Zs1=0, BX = В, BY = BZ = 0. При этом пространственные координаты точек m1 и m2 находят по формулам (2), а направляющие косинусы = по формулам (3): для снимка P1 по элементам a1?, w1? = 0, c1?, а для снимка P2 по элементам a2?, w2?, c2?.
По координатам X? Y? Z? точки модели определяют координаты точки объекта: ,???? (8)
где t = знаменатель масштаба модели. Направляющие косинусы получают по формулам (3), подставляя вместо углов a, w и c продольный угол наклона модели x, поперечный угол наклона модели h и угол поворота модели q.
Для определения семи элементов внешнего ориентирования модели = , , , x, h, q, t = составляют уравнения (8) для трёх или более опорных точек и решают их. Координаты опорных точек находят геодезическими способами или методом фототриангуляции. Совокупность точек объекта, координаты которых известны, образует цифровую модель объекта, служащую для составления карты и решения различных инженерных задач, например для изыскания оптимальной трассы дороги. Кроме аналитических методов обработки снимков, применяются аналоговые, основанные на использовании фотограмметрических приборов = фототрансформатора, стереографа, стереопроектора и др.
Щелевые и панорамные фотоснимки, а также снимки, полученные с применением радиолокационных, телевизионных, инфракрасных-тепловых и других съёмочных систем, существенно расширяют возможности Ф., особенно при космических исследованиях. Но они не имеют единого центра проекции, и элементы внешнего ориентирования их непрерывно изменяются в процессе построения изображения, что осложняет использование таких снимков для измерительных целей.
Основные достоинства фотограмметрических методов работ: большая производительность, т.к. измеряются не объекты, а их изображения; высокая точность благодаря применению точных аппаратов и инструментов для получения и измерения снимков, а также строгих способов обработки результатов измерений; возможность изучения как неподвижных, так и движущихся объектов; полная объективность результатов измерений; измерения выполняются дистанционным методом, что имеет особое значение в условиях, когда объекты недоступны (летящий самолёт или снаряд) или когда пребывание в зоне объекта небезопасно для человека (действующий вулкан, ядерный взрыв). Ф. широко применяется для создания карт Земли, других планет и Луны, измерения геологических элементов залегания пород и документации горных выработок, изучения движения ледников и динамики таяния снежного покрова, определения лесотаксационных характеристик, исследования эрозии почв и наблюдения за изменениями растительного покрова, изучения морских волнений и течений и выполнения подводных съёмок, изысканий, проектирования, возведения и эксплуатации инженерных сооружений, наблюдения за состоянием архитектурных ансамблей, зданий и памятников, определения в военном деле координат огневых позиций и целей и др.
Лит.: Бобир Н. Я., Лобанов А. Н., Федорук Г. Д., Фотограмметрия, М., 1974; Дробышев Ф. В., Основы аэрофотосъемки и фотограмметрии, 3 изд., М., 1973; Коншин М. Д., Аэрофотограмметрия, М., 1967; Лобанов А. Н., Аэрофототопография, М., 1971; его же, Фототопография, 3 изд., М., 1968; Дейнеко В. Ф., Аэрофотогеодезия, М., 1968; Соколова Н. А., Технология крупномасштабных аэротопографических съемок, М., 1973; Русинов М. М., Инженерная фотограмметрия, М., 1966; Rüger W., Buchholtz A., Photogrammetrie, 3 Aufl, B., 1973; Manual of photogrammetry, v. 1=2, Menasha, 1966; Bonneval Н., Photogrammétrie générate, t. 1=4, P., 1972; Piasecki М. B., Fotogrametria, 3 wyd., Warsz., 1973.
? А. Н. Лобанов.