Большая советская энциклопедия

Эйлера подстановки



Эйлера подстановки, подстановки, служащие для приведения интегралов вида ,

где R (x, y) - рациональная функция от х и у, к интегралам от рациональных функций (см. Интегральное исчисление). Предложены Л. Эйлером в 1768. Первая Э. п.

применима, если а>0; вторая Э. п.

применима, если с > 0; третья Э. п.
где l - один из корней трёхчлена ax2 + bx + c, применима, если корни этого трёхчлена действительны. На практике Э. п. требуют громоздких преобразований и потому вместо них обычно пользуются теми или иными искусств. приёмами, упрощающими вычисление.
Аналогичные подстановки делаются в теории чисел при решении неопределённых уравнений 2-й степени в рациональных числах.

Смотрите также: