Бактериальное выщелачивание
Бактериальное выщелачивание, избирательное извлечение химических элементов из многокомпонентных соединений посредством их растворения микроорганизмами в водной среде. Благодаря Б. в. появляется возможность извлекать из руд, отходов производства и т. д. ценные компоненты (медь, уран и др.) или вредные примеси (например, мышьяк в рудах чёрных и цветных металлов). Впервые запатентовано в США (1958) применительно к извлечению меди и цинка.
Б. в. можно пользоваться при всех способах выщелачивания, не связанных с повышенными давлениями и температурой. Наиболее широко для Б. в. применяют тионовые бактерии: Thiobacillus ferrooxidans, способные окислять сульфидные минералы и закисное железо до окисного (так называемые железобактерии), и Th. thiooxidans (так называемые серобактерии). Тионовые бактерии являются хемоавтотрофами, т. е. единственный источник энергии для их жизнедеятельности - процессы окисления закисного железа, сульфидов различных металлов и элементарной серы. Эта энергия расходуется на усвоение углекислоты, выделяемой из атмосферы или из руды. Получаемый углерод идёт на построение клеточной ткани бактерий. Th. ferrooxidans окисляют сульфидные минералы до сульфатов прямым и косвенным путём (когда микроорганизмы окисляют сернокислое закисное железо до окисного, являющегося сильным окислителем и растворителем сульфидов):
Важнейший фактор Б. в. - быстрая регенерация сернокислого окисного железа тионовыми бактериями (Th. ferrooxidans), что в некоторых случаях ускоряет процессы окисления и выщелачивания. Оптимальная температура для развития тионовых бактерий 25-35?C, а pH от 2 до 4. Тионовые бактерии ускоряют растворение халькопирита в 12 раз, арсенонирита и сфалерита в 7 раз, ковелина и борнита в 18 раз по сравнению с обычными химическими методами.
В значительных промышленных масштабах Б. в. применяется для кучного извлечения полезных ископаемых (меди и урана) из руд на месте их залегания. Например, экономически целесообразно извлекать Б. в. медь из забалансовых сульфидных руд. Это осуществляется водными растворами Fe2 (SO4)3 в присутствии Al2(SO4)3, FeSO4 и тионовых бактерий Th. ferrooxidans. Раствор подаётся по шлангам в скважины, пробурённые в рудном теле (рис.); бактерии и сульфат окиси железа окисляют сульфиды меди по схеме:
По горным выработкам раствор из рудного тела подают на цементационную или др. установку для извлечения меди (см. Гидрометаллургия ).
В различных странах ведутся исследования по выщелачиванию с участием тионовых бактерий для извлечения мн. металлов (Zn, Со, As, Мп и др.). Ведутся работы по выявлению бактерий иных видов для извлечения др. полезных ископаемых. Например, для растворения и извлечения золота предложено использовать гетеротрофные бактерии Aeromonas, выделенные из рудничных вод золотоносных приисков.
Простота аппаратуры для Б. в., возможность быстрого размножения бактерий, особенно при возвращении в процесс отработанных растворов, содержащих живые организмы, открывает возможность не только резко снизить себестоимость получения ценных полезных ископаемых, но и значительно увеличить сырьевые ресурсы за счёт использования бедных, забалансовых и потерянных (например, в целиках)руд в месторождениях, отвалов из отходов обогащения, пыли, шлаков и др. В перспективе Б. в. открывает возможности создания полностью автоматизиров. предприятий по получению металлов из забалансовых и потерянных руд непосредственно из недр Земли, минуя сложные горнообогатительные комплексы.
Лит.: Иванов В. И., Степанов Б. А., Применение микробиологических методов в обогащении и гидрометаллургии, М., 1960; Соколова Г. А., Каравайко Г. И., Физиология и геохимическая деятельность тионовых бактерий, М., 1964; VIII Международный конгресс по обогащению полезных ископаемых, Л., 1968; Применение бактериального метода выщелачивания цветных металлов из забалансовых руд, М., 1968; Калабин А. И., Добыча полезных ископаемых подземным выщелачиванием, М , 1969.
? С. И. Полькин.