Элементарная математика
Элементарная математика, несколько неопределённое понятие, охватывающее совокупность таких разделов, задач и методов математики, в которых пользуются общими понятиями переменной функции предела и т п. Иначе говоря Э. м. пользуется теми общими понятиями (абстракциями), которые сложились до появления математического анализа; хотя Э. м. продолжает развиваться и теперь и в ней появляются новые результаты, всё же это происходит в рамках тех же понятий (см. ст. Математика раздел II. История математики до 19 в., пункт 2 - Период элементарной математики).
Э. м. охватывает в основном арифметику и т. н. элементарную теорию чисел, элементарную алгебру, элементарную геометрию, тригонометрию. Коротко Э. м. можно характеризовать как "математику постоянных величин" Это однако не совсем точно, т. к. в Э. м. рассматривают не только постоянные величины, но и геометрические фигуры (не обязательно интересуясь их величиной, например расположением), и не только постоянные, но и переменные величины, например тригонометрические функции. Здесь речь идет о некоторых (конкретно определенных) функциях. Точно также, например, при определении длины окружности пользуются по существу понятием предела, ноне в общем виде, а лишь для конкретно определенной последовательности (периметров вписанных и описанных многоугольников). Общие же понятия функции и предела, так же как и общие понятия кривой, поверхности, фигуры вообще не заданной каким-либо конкретным построением, заведомо выходят за пределы Э. м. Например, в теории чисел отличают элементарные доказательства, в которых обходятся без методов математического анализа. Кстати, эта "элементарная теория чисел" вовсе не является элементарной в смысле простоты
Э. м. в противоположность высшей математике понимают ещё просто как совокупность математических дисциплин, изучаемых в средней общеобразовательной школе.